GWAStoolbox
An R package for the fast processing of data from
Genome-Wide Association Studies

Christian Fuchsberger Daniel Taliun Cristian Pattaro

August 20, 2010



Contents

1 Introduction 3
2 Installation 3
2.1 Windows . . . . .. e e 4
2.2 Unix . . . o e e 4

3 The Quality Control Workflow 5
4 GWAS data files 6
5 The Input Script 7
5.1 Specifying Input Data Files . . . . ... ... ... ... . .... 8
5.2  Describing Input Data Columns . . . . . . . ... ... ...... 8
5.2.1 Field Separator . . . . . .. ... ... . 8

5.2.2 Missing Values . . ... ... ... ... ... 9

523 Column Names . . . . ... ... ... ... . ..... 9

5.2.4 Case Sensitivity . . . . . ... Lo oo 10

5.3 Specifying Data Filters . . . . . . ... ... . . 11
5.3.1 Implausible Values Filter . . . .. . ... ... ... ... 11

5.3.2 High Quality Filters . . . . ... ... ... ... .... 12

5.3.3 Plotting Filter . . . .. .. ... ... ... ... 13

5.4  Specifying Output Files . . . . .. ... ... 0. 13
5.4.1 Output File Name . . . .. ... ... ... ........ 13

5.4.2 Verbosity Level . . . . . . .. ... .0 14

5.4.3 Number And Content Of Plots . . . . ... ... ..... 14

6 The Output Files 15
7 Example 15
8 Additional Tools 17
Index 19



1 Introduction

G WA Stoolbox is an R package for processing data originated from Genome-
Wide Association Studies (GWAS). GWAS have become increasingly popular in
the last years, leading to the discovery of hundreds of common genetic variants
affecting the risk of diseases (such as diabetes, hypertension, chronic kidney
disease, etc.) or the level of quantitative biological parameters.

Results from GWAS typically consist in large files where, for each single nu-
cleotide polymorphisms (SNP), statistics related to the association between the
SNP and the studied trait are stored. The number of SNPs which is currently
being analyzed in most GWAS is in excess of 2.5 Million and is expected to
increase rapidly. For each individual SNP, the minimal information stored con-
sists of the SNP identification code (SNPID), chromosomal position, genotype
(reference and non-reference alleles), frequency of the reference allele, and SNP
effect size and its standard error. Additional information such as p-value, minor
allele frequency (MAF), and an imputation quality index are often provided.
As a consequence, the typical dimension of GWAS result files is of >2.5 Million
rows by >9 columns, for a total file size which is often larger than 300 Mbytes.

With the aim of detecting common or less common genetic variants with
modest effects, it is now common practice to pool results from individual stud-
ies into meta-analysis efforts which not rarely involve dozens of studies. In
these consortia initiatives, each individual study contributes several files either
because multiple traits are being analyzed or because different analyses on the
same trait are needed. Consequently, statisticians working in consortia have to
deal with a massive amount of files which need to be quality controlled to avoid
problems during the meta-analysis process. As a result of the quality control
(QC) process, some files could be found to be corrupted or erroneous so that
new data upload is needed from individuals studies. In this way, the loop be-
tween the consortium and the individual study analyst originates multiple file
checks, until a satisfactory data quality is achieved.

When working with such large datasets in R, simple operations such as the
uploading files into the R working space, file management, and data plotting,
can take considerable time, and a systematic QC of hundreds of files can be
unfeasible or may require several weeks.

With the GWAStoolbox we provide a set of instruments to simplify the
data handling in the framework of meta-analyses of GWA data. The function
gwasgc() is capable to process a high number of GWAS data files in a single run,
and producing several QC reports and figures. A routine for the between-study
comparison is also provided to check systematic difference between files. In ad-
dition, the package contains annotation and graphical tools to help the result
interpretation.

2 Installation

GWAStoolbox package can be downloaded from http://www.eurac.edu/en/
research/institutes/geneticmedicine/Software/GWAStoolbox.html. It re-
quires R version 2.9.2 or higher. The installation of package varies depending
on your host operating system and user privileges. In this section we provide
detailed installation instructions for a wide range of settings.


http://www.eurac.edu/en/research/institutes/geneticmedicine/Software/GWAStoolbox.html
http://www.eurac.edu/en/research/institutes/geneticmedicine/Software/GWAStoolbox.html

2.1 Windows

GWAStoolbox for Windows is distributed in compiled binary form. The follow-
ing steps describe the installation procedure:

1. Download the latest package version GWAStoolbor_X.Y.Z.zip.
2. Start the R program.

3a. If you have administrator privileges (you can install packages to the main
R library):
i. Execute the command:

install.package ("path/to/GWAStoolbox_X.Y.Z.zip", re-
pos=NULL)

where path/to is the directory of the downloaded package.
ii. Now you can load the package in R with the command:
library (GWAStoolbox)
3b. If you do NOT have sufficient privileges to install packages to the main R
library directory:
i. Execute the command:

install.package ("path/GWAStoolbox_X.Y.Z.zip",
lib="path/to/install/directory",
repos=NULL)

where path/to/install/directory is the path with your install di-
rectory.

ii. Now you can load the package in R with command:

library(GWAStoolbox, lib.loc = "path/to/install/directory")

2.2 Unix

G WAStoolboz for Unix is distributed in source form and, therefore, it is compiled
on the user machine. This requires the following tools to be installed:

e C/C++ compilers
e GNU Scientific Library (GSL)* version 1.8

When these requirements are fulfilled, the following steps will guide you through
the package installation process:

1. Download the latest package version GWAStoolbozr_X.Y.Z.tar.gz.

2a. If you have administrator privileges (you can install packages to the main
R library):

i. In the Unix shell execute the command:

R CMD INSTALL path/to/GWAStoolbox_X.Y.Z.tar.gz

*http://www.gnu.org/software/gsl/



where path/to is the directory of the downloaded package.

ii. Now you can start the R program and load the package with the
command:

library (GWAStoolbox)
2b. If you do NOT have sufficient privileges to install packages to the main R
library directory:
i. In the Unix shell execute the single line command:

R CMD INSTALL path/to/GWAStoolbox_X.Y.Z.tar.gz
-1 path/to/install/directory

where path/to/install/directory is the path with your install di-
rectory.

ii. Now you can start the R program and load the package with the
command:

library(GWAStoolbox, lib.loc="path/to/install/directory")

3 The Quality Control Workflow

A careful and thorough data QC should be performed before starting any meta-
analysis of GWAS data, especially when many studies are involved. In this
framework, we identified three objectives of a good QC analysis:

1. formal checking: whether all files that will be entered in the meta-analysis
process fulfill the format guidelines. This includes:
e consistency of column names with meta-analysis guidelines;
e presence of the minimal required information;
e the number of chromosomes is as expected;

e data are in a format that can be analyzed (numeric, character, fac-
tor);

e all SNP identification numbers are unique;

¢ alleles are coded in letters/numbers as expected;
e missing values are coded in a consistent way;

e the field separator is as expected;

e strand assessment;

2. quality checking: evaluating the quality of data in each single file. This
includes:

e presence of unexpected values for some of the items required for the
meta-analysis (e.g.: negative p-values or standard errors);

e p-value inflation and p-value distribution;

3. global checking: identification of any systematic biases that can disturb the
analysis. It is aimed to uncover studies that are systematically different
from the others. This may happen when, for instance, analysts of one
study forget to log-transform the phenotype or apply the wrong model to
the data.



Formal checks and quality checks of individual studies are performed in
GWAStoolboz using the gwasqce() function. gwasqce() was built to include the
following features:

1. rapid file processing and reporting;
2. eliminate routine user operations;
3. multi-format reporting which includes HTML, CSV, and text files.

The complete QC workflow can be summarized in four basic steps (see Figure

1):
1. collect the GWAS data files;

2. write an input script to process of all GWAS files with the gwasqc() func-
tion;

3. run the QC using gwasqc();

4. analyze the QC results to uncover errors or inconsistencies.

@ GWAS DATA ™\ @ OUTPUT Y

7

§ RES_Input_file_2..
Input_file_2 csv %

pe. RES_Input _file_1...

Input_file_1.txt @
® ) ® RES_... /

U T

GWAStoolbox PACKAGE

©

SCRIPT.TXT

PREFIX RES_

PROCESS Input file_1.xt
PROCESS Input_file_2.csv

gwasqc(“SCRIPT.TXT")

s

Figure 1: The quality control workflow.

In the next sections we cover each of the four steps and describe the require-
ments for the input files and the precise content of all output files.

4 GWAS data files

GWAS data are usually stored as delimited text files. The first line of the file is
the header row that describes the content of every column. The field separator
for the columns can be any among whitespace, tabulation, comma, or semicolon.



The field separator must be the same for every row in the file, including the
header.

There is a minimum set of columns, that every GWAS data file should con-
tain. In GWAStoolboz, the following information is required for every file:

e Marker name

e Chromosome number or name
e Marker position

e Coded and non-coded allele

e Allele frequency for coded allele
e Strand

e Imputation label

e Imputation quality

o Effect size

e Standard error

e P-value

The gwasqe() function will take full responsibility for checking if an input
file contains all the information and will report about missing data.

More non-mandatory items can be included in the data file as, for example,
the study sample size, the SNP call rate for genotyped SNPs, the p-value of the
Hardy-Weinberg equilibrium test for genotyped SNPs, etc.

5 The Input Script

gwasqc() can analyze several GWAS data files consecutively. Instructions are
provided using a script in a text file. The format of the script file resembles the
one of the METAL input files'.

Within the input script file, the user can list all GWAS file names to be
analyzed and specify the format of each single GWAS file, including column
names, field separator, etc. In the case that more GWAS files are in the same
format, file specifications can be entered only once, before listing the file names.
Example 1 illustrates the content of a hypothetical input script file.

Example 1

# Description of input data columns
MARKER SNPID

CHR Chromosome

POSITION Position

N n_total

ALLELE coded_allele noncoded_allele

Thttp://www.sph.umich.edu/csg/abecasis/metal /



STRAND strand

EFFECT beta

STDERR se

PVALUE pval

FREQLABEL allele_freq_coded_allele
IMPUTED imputed

IMP_QUALITY oevar_imp

# High quality filters
HQ_SNP 0.01 0.3

# Plotting filters
MAF 0.01 0.05
IMP 0.3 0.6

# Prefix for output files
PREFIX res_

# Input file with GWA data
PROCESS input_file.txt

<

5.1 Specifying Input Data Files

The names of the GWAS data files are specified in the input script with the com-
mand PROCESS? If multiple files have to be checked, multiple PROCESS
lines must be specified.

Example 2 The input script contains the following two lines:

PROCESS input_file_1.txt
PROCESS  /dir_1/dir_2/input_file_2.csv

Then, QC is applied first to input_file_1.txt and then to input_file_2.csv.
As used in the example, when files reside in different directories, the full
path must be specified. <

5.2 Describing Input Data Columns
5.2.1 Field Separator

The field separator may be different for each GWAS data file. The gwasqc()
function automatically detects the separator field for each input file based on
the first 10 rows. However, the user has the possibility to specify the separator
manually for each individual file using the command SEPARATOR. Table 1
lists all supported separators.

Example 3 In the following input script:

¥ GWAStoolbox supports single line feed (’\n’) character or carriage return character (’\r’)
followed by line feed character as the line terminators in the input files.



Argument Separator
COMMA comma

TAB tabulation
WHITESPACE | whitespace
SEMICOLON semicolon

Table 1: The list of arguments for the SEPARATOR command.

PROCESS input_file_1.txt
SEPARATOR TAB

PROCESS input_file_2.csv
PROCESS input_file_3.txt

the field separator for the input file input_file_1.txt is determined au-
tomatically by gwasqc(), but for the input files input_file_2.csv and
input_file_3.txt the separator is manually set to tabulation. <

5.2.2 Missing Values

By default gwasqc() assumes that missing values are labeled as NA. However, the
label for missing value can be specified manually by the user with the command
MISSING.

Example 4 Let's assume the following input script:

MISSING -

PROCESS input_file_1.txt
MISSING NA

PROCESS input_file_2.csv

For the file input_file_1.txt the hyphen symbol is set as symbol for
missing value. Afterwards, it is changed to NA and is used to process
input_file_2.csv. <

5.2.3 Column Names

In table 2 the complete list of the default column names for a GWAS data file
is reported. These names identify uniquely the items in the GWAS data file.

Given that different names can be provided with the GWAS data files,
gwasgc() allows to redefine the default values for every input file in the in-
put script. The redefinition command consists of the default column name fol-
lowed by a new column name. To redefine the default column names for coded
and non-coded alleles, the command ALLELE is followed by two new column
names.

Example 5 Let's assume to have two input files, input_file_1.txt and
input_file_2.txt. In input_file_1.txt, the column names for effect size
and standard error are beta and SE, respectively. In the input_file_2.txt,
the column name for the effect size is the same as in input_file_1.txt,
but the column name for the standard error is STDERR. The correct
column redefinitions are as follows:



Default column name(s)

Description

MARKER

CHR

POSITION
ALLELE1l, ALLELE2
FREQLABEL
STRAND

IMPUTED

IMP_QUALITY

EFFECT
STDERR
PVALUE
HWE_PVAL
CALLRATE

N
USED_FOR_IMP

Marker name

Chromosome number or name

Marker position

Coded and non-coded alleles

Allele frequency for the coded allele

Strand

Label value indicating if the marker was imputed (1)
or genotyped (0)

Imputation quality statistics; this can be differ-
ent depending on the software used for imputation:
MACH’s Rsq, IMPUTE’s properinfo, ...

Effect size

Standard error

P-value

Hardy-Weinberg equilibrium p-value

Genotype callrate

Sample size

Label value indicating if a marker was used for im-
putation (1) or not (0)

Table 2: The default column names.

EFFECT beta
STDERR SE
PROCESS

STDERR STDERR
PROCESS

input_file_1.txt

input_file_2.csv

First, we redefine column names for the input file input_file_1.txt. We
note that the column beta doesn't need to be redefined for the input file
input_file_2.csv. However, for this file we need to redefine the column
STDERR, returning it to the default column naming. <

Example 6 Consider an input file input_file_1.txt with the following
names for ALLELE1 and ALLELE2: myRefAllele and myNonRefAllele.
The new column definition is applied as follows:

ALLELE
PROCESS

<

5.2.4 Case Sensitivity

myRefAllele myNonRefAllele
input_file_1.txt

By default the gwasge() function assumes that column names in the input files
are case insensitive. For example, the column names STDFERR, StdErr, and
STDErr are all perfectly equivalent. This behaviour can be changed for every
input file in the input script using the command CASESENSITIVE, that con-
trols case sensitivity for the column names. Table 3 lists all possible arguments.

10




Argument | Description
0 Column names in the input file are case insensitive (default)
1 Column names in the input file are case sensitive

Table 3: The list of arguments for CASESENSITIVE command.

Example 7 Consider the following commands:

CASESENSITIVE 1

PROCESS input_file_1.txt
CASESENSITIVE O
PROCESS input_file_2.csv

In this case, the column names in the input file input_file_1.txt are case
sensitive and must correspond exactly to the default column names,
while the column names in the input file input_file_2.csv are case insen-
sitive. <

5.3 Specifying Data Filters
5.3.1 Implausible Values Filter

Often, there is the necessity to identify implausible values for the statistics that
will be included in the meta-analysis. Implausible values for the effect estimate,
for its standard error, and for the p-value are sometimes generated by the soft-
ware used for the association testing. In case of small numbers, which is typical
of a disease outcome with a small number of cases or of a SNP with very small
minor allele frequency, statistical packages can report inconsistent results. This
is due to statistical algorithms that fail to converge because of data sparseness.
Other types of inconsistencies can originate from errors in the file management.

In these situations, it is important to identify the SNPs with inconsistent
values, so that they can be removed before starting the meta-analysis. gwasge()
can identify these values by using appropriate threshold values. The number of
SNPs affected by this kind of problems is reported. In addition, these SNPs are
excluded from the calculation of the summary statistics on data quality.

The implausible values filter is used in the gwasge() function to identify implau-
sible data values. Table 4 lists the columns for which the filter is applied and
the default thresholds.

Default column name | Default thresholds
STDERR [0,100000]
IMP_QUALITY (0,1.5)

PVALUE (0,1)
FREQLABEL (0,1)

HWE_PVAL (0,1)

CALLRATE (0,1)

Table 4: The default implausible values filter.

11



The default thresholds can be redefined for every column in the input script.
The new threshold values for a column can be specified after the redefinition of
the column name (see Section 5.2.3).

Example 8 Let's assume that the input file input_file_1.txt has a stan-
dard error column called STDERR and that the corresponding column
in the input file input_file_2.csv is called SE. In addition, the imputa-
tion quality column is defined as oevar_imp in both files. The following
script shows how the user can redefine the column names while applying
different plausibility filters:

STDERR STDERR O 80000
IMP_QUALITY oevar_imp O 1
PROCESS input_file_1.txt
STDERR SE 0 100000
PROCESS input_file_2.csv

The file input_file_1.txt has new [0,80000] thresholds for the standard
error column and new (0, 1) threshold for the imputation quality. For
the file input_file_2.csv the thresholds of [0, 100000] will be applied to
the standard error column, while for the imputation quality column the
same filters as for the input_file_1.txt will be applied. <

5.3.2 High Quality Filters

In many cases, the analysis is restricted to SNPs with high imputation quality
and with not too small minor allele frequency. We call these SNPs ’high quality
SNPs’, that is SNPs for which results should be quite robust. In the special case,
when estimating the inflation factor, lambda, to check the presence of cryptic
relatedness or hidden population sub-structures, it can be important to remove
SNPs that could artificially increase the value of lambda. Summary statistics
are calculated after excluding SNPs with low quality (CSV report files). Table
5 lists the default thresholds for the allele frequency and for the imputation
quality.

Default column name | Default thresholds
FREQLABEL > 0.01
IMP_QUALITY > 0.3

Table 5: The default high quality imputation filters.

The default values can be redefined using the command HQ_SNP for every
input file in the input script. The command is followed by two values: the first
one corresponds to the threshold for the minor allele frequency, and the second
one corresponds to the threshold for the imputation quality.

Example 9 If we want to define 'high quality SNPs' those with minor
allele frequency > 0.03 and with imputation quality > 0.4, we would
add the following lines to the input script:

HQ_SNP 0.03 0.4
PROCESS input_file_1.txt

12



<

5.3.3 Plotting Filter

The plotting filter is used to select appropriate data for the QQ-plots, boxplots
and histograms. The filter has two threshold levels: each of them is applied
dependently on the plot type and column. Figure 2 (see Section 5.4.3) shows
what data and filters are used when producing plots. Table 6 lists the default
threshold values.

Default column name | Default 1st level | Default 2nd level
thresholds thresholds

FREQLABEL > 0.01 > 0.05

IMP_QUALITY > 0.3 > 0.6

Table 6: The default plotting filter.

The default threshold values for the coded allele frequency and imputation
quality can be redefined accordingly with the commands MAF and IMP for
the every input file in the input script.

Example 10 Assume the input script contains the following com-

mands:
MAF 0.02 0.03
IMP 0.3 0.5

PROCESS input_file_1.txt

In this example new plotting filter thresholds are set for the input file
input_file_1.txt. For the first level threshold the coded allele frequency
> 0.02 and the imputation quality > 0.3, while for the second level
threshold the coded allele frequency > 0.03 and imputation quality
>0.5. <

5.4 Specifying Output Files
5.4.1 Output File Name

The output file names are constructed from the input file names by adding the
specified prefix. This is done both for the textual output files and image files.
The prefix can be specified once for all input files, or for every single input file
or groups of input files explicitly using the command PREFIX.

Example 11 Consider the following input script:

PREFIX res_

PROCESS input_file_1.txt
PROCESS input_file_2.csv
PREFIX result_

PROCESS input_file_3.tab

13



In this example, all the result output files corresponding to the input
files input_file_1.txt and input_file_2.csv will be prefixed with res_, while
the result output files corresponding to the input file input_file_3.tab will
be prefixed with result_. <

5.4.2 Verbosity Level

The GWAStoolbox package provides the possibility to control the number of
generated output figures using command VERBOSITY (see Table 7 for the
available options).

Argument | Description
1 The default and the lowest verbosity level.
2 The highest verbosity level.

Table 7: The list of arguments for the VERBOSITY command.

Example 12 Assume the input script contains the following com-

mands:

VERBOSITY 2

PROCESS input_file_1.txt
VERBOSITY 1

PROCESS input_file_2.csv

In this example the input file input_file_1.txt is processed with the high-
est verbosity level and therefore all figures are produced, while the input
file input_file_2.csv is processed with the lowest verbosity level and less
output figures are generated. <

5.4.3 Number And Content Of Plots

Number and content of the output plots depend on the setting of the plotting
filters (see Section 5.3.3) and on the available columns in the input file. Figure 2
shows the dependencies. If some dependency is not satisfied because of missing
column or filter setting, then the corresponding plot is not produced or may be
truncated at different levels.

Furthermore, the boxplots comparing the EFFECT distributions across stud-
ies allow the specification of a BOXPLOTWIDTH that can be based on one
of the other available information (typically the sample size). As an argument,
BOXPLOTWIDTH requires one of the default column names. If BOX-
PLOTWIDTH is not specified all boxplots have the same width.

It is also possible to specify labels for every input file, to be used in the plots
instead of the full file names, which could be too long and, therefore, clutter the
plots.

Example 13 Let n_total be the column name which identifies the
sample size in the input file input_file_1.txt, and samplesize the corre-
sponding name in input_file_2.csv. Then, consider the following input
script:

14



Plots

s 2 3
59 5 & 5 3 E & 3 % ] g
Columns
PVALUE o 00
EFFECT o [ N ) o0
o @ @ @ eeoe o
FReqLaBEL. @) @ ® ® ® [ ]
HWE_PVAL [ )
CALLRATE ®
" °
weanr @ @ e o0 o
Filters
MeFlevell @) @ [ ] [ ] ()
MAF level 2 ) [ ]
mPlevell @ @ [ W ] ®
IMP level 2 [ W ]

Figure 2: The dependency of plots on columns and filters.

N n_total

PROCESS input_file_1.txt first

N samplesize

PROCESS /dir_1/dir_2/input_file_2.csv second

BOXPLOTWIDTH N

In this example, the width of the first boxplot for the input file in-
put_file_1.txt depends on the n_total column, while the width of the
second boxplot for the input file input_file_2.csv depends on the sam-
plesize column. The labels "first” and "second” will be used to label the
two studies in the plots. <

6 The Output Files

The GWAStoolbox package produces four types of files:

1. Figures with QQ-plots, histograms and boxplots (see Figure 2 for all em-
ployed input columns and filters).

2. Textual report file with .txt extension.

3. Comma separated file with .csv extension, that contains statistics for the
high quality imputation data (see Section 5.3.2).

4. The HTML document, that combines both textual output and figures.

7 Example

This is an embedded R code example. All input files of this example are located
in the subdirectory doc of the installed G WA Stoolbox package.

Consider the two GWAS data files: gwa_data_example_1.tbl and gwa_data_example_2.csv.
The first file contains 16 columns separated with tabulation:

15



> t <- read.table("gwa_data_example_1.tbl", header = T, nrow = 1,
+ sep = ”\t”)
> colnames (t)

[1] "SNPID" "chr" "position" "coded_all"
[5] "noncoded_all" "strand_genome" "beta" "SE"

[9] "pval" "AF_coded_all" '"callrate" "n_total"
[13] "oevar_imp" "imputed" "used_for_imp" "HWE_pval"

At the same time, the second file also contains 16 columns, however separated
with comma:

> t <- read.table("gwa_data_example_2.csv", header = T, nrow = 1,
+ sep = u, u)
> colnames (t)

[1] "SNPID" "chr" "position" "coded_all"
[5] "noncoded_all" "strand_genome" "beta" "StdErr"
[o1 "p" "AF_coded_all" '"callrate" "n_total"
[13] "oevar_imp" "imputed" "used_for_imp" "HWE_pval"

In order to perform the quality control check of these two files with G WA Stoolbox
package, we prepare a simple input script GWAS_script.tzt. Below are listed
commands, which were inlcuded in the script:

> cat(readLines ("GWASQC_script.txt"), sep = "\n")

# Column names

ALLELE coded_all noncoded_all
CALLRATE callrate

CHR chr

EFFECT beta
FREQLABEL AF_coded_all
HWE_PVAL HWE_pval

IMPUTED imputed

IMP_QUALITY oevar_imp

MARKER SNPID

N n_total

POSITION position

PVALUE pval

STRAND strand_genome
STDERR SE
USED_FOR_IMP used_for_imp

# Plotting filters for the coded allele frequency and imputation quality
MAF 0.01 0.05
IMP 0.3 0.5

# Prefix for output files
PREFIX res

# Column N controls the width of boxplots

16



BOXPLOTWIDTH N

# Input file and its short name for plotting
PROCESS gwa_data_example_1.tbl first

PVALUE P
STDERR StdErr

PROCESS gwa_data_example_2.csv second

When the input script was prepared, we load the G WAStoolbox library and call
the gwasge() function as follows:

> library(GWAStoolbox)
> gwasqc ("GWASQC_script.txt")

As a result, the following output files were generated:

boxplots.html

boxplots_EFFECT.png
boxplots_EFFECT_HQ.png

main.html

menu.html

res_gwa_data_example_1.tbl.csv
res_gwa_data_example_1.tbl.html
res_gwa_data_example_1.tbl.txt
res_gwa_data_example_1.tbl_AF_coded_all.png
res_gwa_data_example_1.tbl_beta.png
res_gwa_data_example_1.tbl_n_total.png
res_gwa_data_example_1.tbl_oevar_imp.png
res_gwa_data_example_1.tbl_pval.png
res_gwa_data_example_1.tbl_qqplot_IMP.png
res_gwa_data_example_1.tbl_qgqplot_MAF.png
res_gwa_data_example_1.tbl_qqplot_MAF_IMP.png
res_gwa_data_example_1.tbl_SE.png
res_gwa_data_example_2.csv
res_gwa_data_example_2.html
res_gwa_data_example_2.txt
res_gwa_data_example_2_AF_coded_all.png
res_gwa_data_example_2_beta.png
res_gwa_data_example_2_n_total.png
res_gwa_data_example_2_oevar_imp.png
res_gwa_data_example_2_p.png
res_gwa_data_example_2_qgplot_IMP.png
res_gwa_data_example_2_qgplot_MAF.png
res_gwa_data_example_2_qggplot_MAF_IMP.png
res_gwa_data_example_2_StdErr.png

8 Additional Tools

Coming soon.

17



References

[1] Cristen J. Willer , Yun Li , and Gongalo R. Abecasis. (2010) METAL:
fast and efficient meta-analysis of genomewide association scans.
Bioinformatics 26: 2190-2191.

[2] Paul I.W. de Bakker , Manuel A.R. Ferreira , Xiaoming Jia , Benjamin M.
Neale , Soumya Raychaudhuri , and Benjamin F. Voight (2008) Practical
aspects of imputation-driven meta-analysis of genome-wide asso-
ciation studies. Hum. Mol. Genet. 17: R122-R128.

18



Index

ALLELE, 9
ALLELEL, 10
ALLELE2, 10

BOXPLOTWIDTH, 14

CALLRATE, 10, 11
CASESENSITIVE, 10
CHR, 10

COMMA, 9

EFFECT, 10, 14
FREQLABEL, 10-13

HQ_SNP, 12
HWE_PVAL, 10, 11

IMP, 13
IMP_QUALITY, 10-13
IMPUTED, 10

MAF, 13
MARKER, 10
MISSING, 9

N, 10

POSITION, 10
PREFIX, 13
PROCESS, 8
PVALUE, 10, 11

SEMICOLON, 9
SEPARATOR, 8
STDERR, 10, 11
STRAND, 10

TAB, 9
USED_FOR_IMP, 10
VERBOSITY, 14

WHITESPACE, 9

19



	Introduction
	Installation
	Windows
	Unix

	The Quality Control Workflow
	GWAS data files
	The Input Script
	Specifying Input Data Files
	Describing Input Data Columns
	Field Separator
	Missing Values
	Column Names
	Case Sensitivity

	Specifying Data Filters
	Implausible Values Filter
	High Quality Filters
	Plotting Filter

	Specifying Output Files
	Output File Name
	Verbosity Level
	Number And Content Of Plots


	The Output Files
	Example
	Additional Tools
	Index

